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Abstract—In this paper the magneto-hydrodynamic peristaltic flow of  an incompressible Newtonian fluid was investigated between 

two eccentric tubes. The problem is measured in cylindrical coordinates. Geometrically, we considered two eccentric tubes in which the inner tube is rigid 

while the outer tube is tapered and have a sinusoidal wave generated on its walls. The governing equations are observed nonlinear second order partial 

differential equations under the conditions of long wavelength approximation. The problem has been solved with the help of the homotopy perturbation 

method. The obtained results are then plotted to see the influence of the different physical parameters on the velocity, pressure gradient and pressure 

rise expressions. The velocity profile is drawn in the two and three dimensions. The trapping boluses are also discussed through the contour plot of the 

streamlines. 

Index Terms— Peristaltic flow; Taper Eccentric Cylinders; series solution method; Magneto-fluid.   

——————————      —————————— 

1 Introduction 

                                                              
eristalsis  pumping   is  a phenomenon   in  which  fluid  
transport happens  when  a gradual   wave  of  area  contrac-

tion    or    expansion propagates  along  the  length  of  distensi-
ble  duct. Peristalsis  is one of  the     topic highly   important   in   
applied   mathematics,  engineering, physiological world  and  
its  have many  applications  in  real  life. It is an  automatic and  
vital process that moves food through the   digestive tract, trans-
port urine from kidney to bladder,  in  the  vasomotion    of   
small  blood  vessels  such  as  venues, capillaries and arterioles. 
And also the mechanism of  peristaltic  transport  has  been   ex-
ploited  for industrial applications like sanitary fluid transport,  
corrosive fluids,  a toxic liquid  transport  in the  nuclear   indus-
try. The peristaltic  transport  with  long  wavelength at  low 
Reynolds number [1,2]  with all  Reynold  numbers [3] or  for  
long  and short wavelength [4] have been analyzed.  RACHID, 
[5] studied The effect  of  a pulsatile   flow  on  the Peristaltic  
Output:  Case of  a  Newtonian  Fluid.  Moreover, with through  
a porous medium by Afifi NAS et al. [6]. Mekheimer [7] has   
shown  the  effect of the induced  magnetic  field on the peristal-
tic flow of  a couple   stress  fluid. Ellahi, et al [8]. Studied Series 
Solutions of Magnetohydrodynamic peristaltic flow of a jeffrey 
fluid in eccentric cylinders.  The  magnetic field  effects  of   dif-
ferent   types of   fluids  [8-10]. A lot of  investigations are  avail-
able  in  the  literature  to  study  the  effect of  an   endoscope  on   
peristaltic  motion of  Newtonian and  non-Newtonian fluids 
[11-13].  Mekheimer [14] studied The micropolar fluid model for 
blood flow through a tapered artery with a stenosis 

 

Also with Peristaltic Transport in channel [15,16]. Misra and  
Pandey  [17] studied peristaltic transport in a tapered tube.  In 
the  present  work  we discuss the peristaltic   flow  of   newto-
nian  fluids  under  the   effect of   the   magnetic   field  in   an  
eccentric  cylinder. Which the inner tube is  rigid while the outer 
have  a  sinusoidal  wave  generated  on   its   tapered  walls.  
Peristaltic   pumping  characteristics   are   discussed  in   detail.  
The   flow analysis  is developed  in  the  unsteady state   by  us-
ing the   long   wavelength   approximation.  The problem is first 
modeled and  then solved an alyticall   for  the   axial   velocity,   
axial    pressure gradient   and  pressure   rise.  This   analysis    
gives    a  better judgement  for  the  speed  of   injection  and   
the fluid flow characteristics in the syringe. Also, the injection  
can  be  carried  out  more  proficiently  and  pain  of   the  pa-
tient can be extenuated. 
 
2  Mathematical Formulation Of The Problem: 
 
Consider   a MHD  flow of  an   incompressible    Newtonian  
fluid through eccentric tubes. The inner tube is rigid  (endoscope  
or catheter)  and   the   outer   have  a sinusoidal  wave  generat-
ed  on  the  walls  of tapered. The   radius  of   the  inner  tube  is  
δ ′  but we  need to reference  the   fluid motion to the center  of 
the outer  tube. The center of  the inner tube is now at position 

0, =′′=′ yz ε   where     and   are coordinates  in  the   
cross-section  of  the pipe as shown in figure 3.1 Then the boun-
dary of   the  inner  tube  is  described  to  order  ε ′  by 

].cos[1 θεδ ′′+′=′r (obtained  by  using the   cosine rule)   
where  ( δε ′<<′ ) is the   parameter   that  controls  the   eccen-
tricity  of  the inner  tube  position. The  geometry of  the walls  
surface  is  described  in fig.( 1). 
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Fig 

1 The simplified model of geometry of the problem 
 
The equations for the radii are  

 
 
 

(1) 
 

Where )(1 za′ is the  radius of  the tapered  tube segment in  the  
annulus region, a  is the radius of outer  tube at the  non-tapered 
wall , ξ is the tapering parameter, δ ′   is the radius of the inner 
tube, b is the  amplitude of  the wave, λ  is the   wavelength, c is   
the  propagation  velocity  and t ′  is  the time.    The  problem 
has been   studied  in  a cylindrical  coordinate   system

),,( zr ′′′ θ  radial, azimuthal  and   axial   coordinates  respec-
tively. 
The equations of  motion of  the  flow in  the gap  between  the 
inner and the outer tubes are 
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(5) 
 Where  u,w,v ′′′  are the  velocity components in  r′ ,θ′ and  
z ′ -  directions, respectively,  ρ  is the density,  p′  is the pres-
sure and  µ   is the viscosity, )(0 rB  is the magnetic field, σ  is  
the electrical conductivity. 
 
  

 
The boundary conditions are: 

1rr    at   Vu
rr    at0      u
′=′′=′
′=′=′                                                         (6) 

 
It  is  convenient  to  non-dimensionalize  the  variables  appear-
ing  in equations  (2-5)  and   introducing  Reynolds   number  
Re , wave number ratio  δ  as follows: 

Where   Re   is  the   Reynolds  number,  M   is  the   Hart-
mann   number,  the parameter  of taper is(ξ = tan φ )[14],  φ  
is   called   the taper angle and    for   the  converging tapering (ξ 
< 0), non-tapered artery (ξ = 0) and  the diverging   tapering (ξ > 
0)  as   shown  in ( Fig.1) . 

0δ  is  the dimensionless  wave 

ber  and ε    is  eccentricity  parameter. *φ  is the  amplitude 
ratio.  After   using   the  above  assumption and  the  long 
velength  approimation )0( 0 →δ  then taking the equ

uations  of motion in the dimensionless form become:  
 

 
 
 
 
 
 
Eqs. (10, 11)   shows   that p  is not a function of  r and θ . The 
corresponding  boundary conditions in non-dimensional form 
are 

         ,0=u   at  
P

)],(2cos[
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       (12) 
          ,Vu =    at   ]cos[1 θεδ +== rr                        (13) 

 
3 Solution Of The Problem 
Solution of  the above boundary value problem is obtained by 
the series solution method [18].   The  deformation  equation   for  
the   given problem is defined as 

 
(14) 

 
where  , the linear operator is assumed to be  
We define the following initial guess satisfying 
the boundary conditions 

 
             (15) 
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Now we describe  

             (16) 
 

Using the above equation into Eq. (14) and then finding the 
terms of the first two orders  of  embedding  parameter f ,  we 
get  the   following problems including boundary conditions 
 
Zeroth order system: 

 

 
   

 
The solution of the above zeroth order system can be obtained 
by using  Eq. (15) and is simply found as 

  
(20) 
 

First order system: 
 

 
or 
 

                    (22) 
                                         

                    (23)                                            
                                                   

The solution of the above linear ordinary differential equation is 
given in  

Where 
 
 
 
 
 
 

Finally, for 1f → , we  approach  the  final  solution. So from Eq. 
(16), we get 

(24) 
 

  
where 0u and 1u are defined in Eq. (20).  
The instantaneous volume flow rate ),( tzQ  is given by 

(25) 
 
 

 

 
  
 
 
 
 
 
 
 
 
 
(26) 

The mean volume flow rate Q over one period is given as [7] 
 
 

(27) 
 

 
Now pressure gradient      will be evaluated by using Eqs. 

(26) and (27) 

])))
r
r((Log[

)M4g(]
r
rM(Log[gCosh[22Mr 4g2])](

r
rg[MCsch[M(Lor 2

])
r
r)(Log[M4(r g)rM(r2](

r
rg[MCoth[M(Lo 2]

r
r[Cosh[M(Log

)M(4 r g2)MM)(4)r((rr g π((2])])))))
r
r[Sinh[M(Logr 2

r ])](M
r
rg[VCsch[M(Lo2]))

r
r])]((Log[

r
r[Coth[M(Logr (g

)MM4(])Log[r)M4(]Log[r)M4(]
r
rM(Log[Cosh[2 22(

])]
r
r[Csch[M(Log Mr g])]

r
r[Csch[M(Log V)M4(M2)Mg(4(

]
r
r[Cosh[M(Log r )M(4r π(g

)M4M(
1Q()M42

1

2

2

2

12
2

2

12
1

2

122
2

4
2

4
1

2

1

2

1

22
1

24
2

4
1

2
2

2

12
1

2
2

1

2

2

1

2

12
2

3
2

2
1

2

2

1

2

12
1

1

2222

2

12
1

22
22

22

+−+++−+

+−+−−+

+−+−++

−

+−++−++−−+−

++−++−

+
+−

−+−= M((
dz
dp

(28) 

The pressure rise )(tp∆  in non-dimensional form is defined as 
(29) 

 
 

4  Results And Discussion 
The analytical and numerical results obtained above for the 
given analysis  are  discussed  graphically   The  graphical  

treatment  for  the data  of  pressure   rise  ∆p,   pressure  gra-
dient  and velocity  profile  u(r, θ, z, t) with  the variation  of all 
emerging dimensionless parameters  like time t, flow rate  Q,  
the taper  parameter  ζ ,   the   velocity   of   the     inner  tube  V,  
the eccentricity parameter ε and the MHD  parameter  M  has 
been analyzed.  In  the  end, the stream lines  observing   the  
peristaltic flow   are   drawn   for   the   parameters   M,  Q   and   
ζ    while  other parameters remain fixed. The comparison 
graph for the values  obtained  in  present  work  with  the re-
sults of  R. Ellahi et. al. [8] is displayed in figures. The graphs for 
the pressure rise ∆p(t) versus flow rate Q under  the  effects of 
given  parameters  are  drawn  in figs 2-6.   These   graphs  show 
the  pumping   regions, that is, the peristaltic (Q > 0,∆ p > 0), the 
augmented  pumping  (Q > 0,∆ p < 0)  and   the   retrograde   
pumping   (Q < 0,∆ p > 0) The pressure gradient   against the the  
coordinate  z  with the variation of  pertinent  parameters  are  
shown  in  figs 7-10. The velocity  field u(r,θ, z, t) versus the  
radial  coordinate  r  is plotted in fig.s 11-15 for  both  two  and  
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three  dimensions.  The  streamline graphs  are  shown  in figs. 
16  -18  fig  2  is    plotted   to  see   the  variation  of  pressure  
rise  for  different   values   of  the   eccentricity   parameter   ε 
and   the   angle  θ   while  all  other parameters  are  kept  fixed.  
It  is   observed   that peristaltic  pumping   region is in between   
Q ∈ [0, 0.7], augmented  pumping  is  in  Q ∈ [0.7, 2]  and   retro-
grade pumping part is Q  ∈ [−1, 0]. It is also observed from this 
graph that  the pressure rise increases  with  the  variation  of  ε   
but  decreases  with  the  angle  θ in between the region Q ∈ [−1, 
0.7] and  opposite  behavior is seen in the remaining part. The 
graph of pressure rise for the parameter M and δ is plotted in fig 
3.  Fig 4.   Shows    that  the   peristaltic   pumping   part   is   Q 
∈[0, 0.3] when varies values of ε  and *φ  ,  while  augmented  
and  retrograde  pumping regions are Q∈ [0.3, 2] and Q ∈ [−1, 0], 
respectively. We note that the pressure rise in fig 5.  Increase 
whenever the taper parameter ζ   into smaller values, The varia-
tion   of  pressure rise  ∆p  in V is similar to that  of   M (See fig 
6). The pressure gradient for the parameters M and δ is drawn in 
fig 7. It  is measured  from this  figure   that  pressure  gradient  
is in linear relation to both of  the  parameters  in  the narrowest 
parts  of   the   cylinders   but   inverse   relation  is  seen  in  the   
wider parts. The variation of  pressure gradient with the  para-
meters ζ  and ε is very much similar to that of  the  parameters  
M  and  δ  and is shown in fig 8. The only difference is that the 
pressure gradient is minimum on the left and right     sides of the 
cylinder  while  appears  maximum  at  the centre.  It  means  
that  flow  can easily pass without imposition of  large pressure 
gradient in the  two sides of the channel  while  much   pressure  
gradient  is required to maintain the flux in the central part  near  
z = 0.8. This  is  in  good  agreement  with  the  physical  condi-
tion.  Also,  for a diverging   tapering   with   angleζ . Figs (8.a)   
extending  case  ζ  > 0 figs (8.b), the pressure gradient  values 
higher than  all other  existing  results  corresponding  to  con-
verging  tapering   case  ζ <0 .It  can  be   observed  from  figs 9 
and  10  that   the  pressure  gradient  increases  with  the para-
meters Q and  V, while  when δ is  increased  the  pressure gra-
dient decreases on the left and right sides  but   increases  at  the  
centre  of  the  cylinders.  It is also seen  that   the  variation  of  
pressure  gradient  remains  same  in  the  two  sides  of  the cy-
linders and become different at the central  part  with  changing   
V  but this  variation  remains  same  throughout  for  the  para-
meter Q. The  fig 11  shows that the velocity  field  is an    in-
creasing   function  of    the  parameter  δ   while  decreasing    
with   the parameter  M.  The velocity field is in  inverse  relation 
with  Q  but  have  a  direct  variation  with  ε  (see fig 12). It  is  
also observed that the  presence  of  a magnetic field for fluid 
causes to slow  down  the  flow.  It  is  observed  from  fig 13  that  
the  velocity distribution is increasing with δ and  

*φ   while  
reducing for t. Fig 14 shows that the velocity profile  is linearly 
changing with 

*φ  and V. The Fig 15 shows that   velocity  in the 
case  ζ  > 0   at  (15.a)   higher  than  reported  in  the  case  ζ  ≤ 
0  at   (15.b). Fig 16 is drown to see  the  streamlines for the pa-
rameter M. It is  measured  from  this  figure  that   numbers of  
bolus  are  not changing but size  is  increasing  with  the  in-
creasing   effects of  M at the bottom of the  cylinder,  while  bo-
lus  are  lessened  in number when seen in the upper part. The 
boluses are reduced both in size and number when seen in the 
parameter  Q  in both  parts  of  the  geometry  (see fig 17).  Fig 

16 is drawn to see the streamlines for the parameter M..It is 
measured from this figure that numbers of bolus are not chang-
ing but size is decreasing with the increasing effects of M in the 
upper part of the cylinder, while bolus are disappears when seen 
in the bottom part. The boluses are reduced both in size and 
number when seen for the parameter Q in both parts of the geo-
metry (see fig 17).  It is seen from fig 18 that the numbers of bo-
lus are decreasing With different values of the parameter ζ on 
both sides of   the cylinder  but in the lower half of the tube, the 
bolus becomes smaller with increasing magnitude of the para-
meter ζ >0 also the Incompressible fluid from the left side. On 
the contrary, the bolus fade out with less values of ζ <0 and the 
Incompressible fluid from the right side 

 

 
Fig 2  Pressure 1Trise1T versus flow rate for fixed parameters 

5.0,5.0,1.0,1.0,0,2.0* ====== VMt δζφ 

 
1TFig 3  Pressure rise versus flow rate for fixed parameters 

5.0,50,01.0,1.0,0,2.0 0* ====== Vt θεζφ 

 
1TFig 4  Pressure rise versus flow rate  for fixed parameters 

5.0,5.0,1.0,1.0,0,500 ====== VMt δζθ  

 
 

 Fig 5  Pressure rise versus flow rate  for fixed parameters 
5.0,5.0,1.0,1.0,01.0,500 ====== VMt δεθ  
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1TFig 6  Pressure rise versus flow rate for fixed parameters 

0* 50,5.0,01.0,1.0,0,2.0 ====== θεζφ Mt 
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1TFig 7  Variation of pressure gradient with z for fixed parameters 

5.0,3.0,01.0,50,3.0,0,1.0 0* ======= QVt εθζφ 
 

 

 
 

1TFig 8  Variation of pressure gradient with z for fixed parameters 
5.0,3.0,01.0,50,3.0,5.0 0 ====== QVtM εθ 

 

 
 

  

1TFig 10 Variation of pressure gradient with z for fixed param ters 
3.0,5.0,01.0,50,3.0,0,1.0 0* ======= VMt εθζφ  

1TFig 11  Variation of velocity profile u  with r  for fixed parameters  

Fig 9  Variation of pressure gradient   with z for fixed  
Parameters 5.0,3.0,01.0,50,3.0,5.0 0 ====== QVtM εθ  

a 

b 
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1.0,5.0,5.0,1.0,75,0,1.0,0 0 ======== εθζφ tQVz  

Fig 12  Variation of velocity profile u with r  for fixed parameters 
1.0,5.0,5.0,1.0,75,0,1.0,0 0* ======== εθζφ tQVz 
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Fig 13 Variation of velocity profile u with r  for fixed parameters 

5.0,01.0,1.0,1.0,75,0,1.0,0 0* ======== MQVz εθζφ  

Fig14  Variation of velocity profile u with r  for fixed parameters 
5.0,1.0,2.0,5.0,1.0,50,0,0 0 ======== MtQz εδθζ   

1TFig 15 Variation of velocity profile u with r  for fixed parameters 1T

5.0,1.0,2.0,5.0,1.0,2.0,50 *0 ======= MtQ εδφθ  
 
 
 
 

 
1TFig 16  Streamlines for different values of  M  for The other   
parameter are 1T 0,4.0,05.0,2.0,1,3.0,02.0,50 *0 ======== ζεδφθ tQV  

 
 

 
 
 

Fig 17  Streamlines for different values of  Q  for The other 
parameters are 0,4.0,05.0,5.0,1,3.0,05.0,50 *0 ======== ζεδφθ tMV  

Fig 18  Streamlines for different values of  a for (ζ >0), b  
for (ζ ≤0.0) The of the parameters are  

3.0,4.0,05.0,5.0,6.0,3.0,2.0,50 *0 ======== MtQV εδφθ
 
 

a 

b 
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1T5 Concluding  Remark  
1TIn the present investigation Homotopy perturbation me-

thod solutions are presented for the peristaltic flow of MHD  

fluid between two eccentric tubes. The inner  tube  is  rigid  and 

the outer   have  a sinusoidal  wave generated  on  the  walls  of  

tapered. The problem  is measuring under the assumptions of 

long wavelength and low Reynolds number. The following ob-

servations have been found: 

• 1TIt is observed that pressure rise is  decreasing function of  

taper parameter ζ and θ while it  increasing function of  
radius δ , magnetic field  M 

• 1TPressure rise  is increasing function of  eccentricity pa-

rameter,  amplitude ratio
*φ  and the velocity   of  the   

inner  tube V. 

• 1TThe pressure gradient  increases with radius δ , eccen-
tricity parameter ε  and the velocity   of  the   inner  
tube V while decrease with flow rate Q, taper  parame-
ter ζ  and magnetic field  M. 

 

• 1TThe velocity profile is increasing with the increase in ra-
dius, amplitude ratio 

*φ  and eccentricity parameter ε   
while decrease with the flow rate Q, magnetic field  M 
and taper parameter, 

• 1TThe velocity in  the case of eccentric cylinders  higher 
than concentric one 

• 1TIt is depicted that the number of  bolus is changing in-
versely with taper parameter ζ  and  flow rate Q while 
not changing increasing effects of  magnetic field  M but 
dimensions.  
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